

TUTORIALS POINT

Simply Easy Learning Page 1

Testing Overview

This chapter describes the basic definition and concepts of Testing from Software point
of view.

What is testing?

Testing is the process of evaluating a

system or its component(s) with the intent
to find that whether it satisfies the specified
requirements or not. This activity results in
the actual, expected and difference between
their results. In simple words testing is
executing a system in order to identify any

gaps, errors or missing requirements in
contrary to the actual desire or
requirements.

According to ANSI/IEEE 1059 standard, Testing can be defined as “A process of analyzing

a software item to detect the differences between existing and required conditions (that
is defects/errors/bugs) and to evaluate the features of the software item”.

Who does testing?

It depends on the process and the associated stakeholders of the project(s). In the IT

industry, large companies have a team with responsibilities to evaluate the developed
software in the context of the given requirements. Moreover, developers also conduct
testing which is called Unit Testing. In most cases, following professionals are involved in
testing of a system within their respective capacities:

 Software Tester
 Software Developer
 Project Lead/Manager
 End User

CHAPTER

1

 Unit

Integration

System

TUTORIALS POINT

Simply Easy Learning Page 2

Different companies have difference designations for people who test the software on the
basis of their experience and knowledge such as Software Tester, Software Quality
Assurance Engineer, and QA Analyst etc.

It is not possible to test the software at any time during its cycle. The next two sections
state when testing should be started and when to end it during the SDLC.

i. When to Start Testing

An early start to testing reduces the cost, time to rework and error free software that is
delivered to the client. However in Software Development Life Cycle (SDLC) testing can

be started from the Requirements Gathering phase and lasts till the deployment of the
software. However it also depends on the development model that is being used. For
example in Water fall model formal testing is conducted in the Testing phase, but in
incremental model, testing is performed at the end of every increment/iteration and at
the end the whole application is tested.

Testing is done in different forms at every phase of SDLC like during Requirement
gathering phase, the analysis and verifications of requirements are also considered
testing. Reviewing the design in the design phase with intent to improve the design is
also considered as testing. Testing performed by a developer on completion of the code is
also categorized as Unit type of testing.

ii. When to Stop Testing

Unlike when to start testing it is difficult to determine when to stop testing, as testing is a
never ending process and no one can say that any software is 100% tested. Following
are the aspects which should be considered to stop the testing:

 Testing Deadlines.

 Completion of test case execution.

 Completion of Functional and code coverage to a certain point.

 Bug rate falls below a certain level and no high priority bugs are identified.

 Management decision.

Difference between Verification & Validation
These two terms are very confusing for people, who use them interchangeably. Let’s
discuss about them briefly.

Verification Validation

Are you building it right? Are you building the right thing?

Ensure that the software system meets all
the functionality.

Ensure that functionalities meet the
intended behavior.

Verification takes place first and includes

the checking for documentation, code etc.

Validation occurs after verification and

mainly involves the checking of the overall
product.

Done by developers. Done by Testers.

Have static activities as it includes the
reviews, walkthroughs, and inspections to
verify that software is correct or not.

Have dynamic activities as it includes
executing the software against the
requirements.

It is an objective process and no subjective
decision should be needed to verify the
Software.

It is a subjective process and involves
subjective decisions on how well the
Software works.

TUTORIALS POINT

Simply Easy Learning Page 3

Difference between Testing, Quality Assurance
and Quality Control

Most people are confused with the concepts and difference between Quality Assurance,
Quality Control and Testing. Although they are interrelated and at some level they can be
considered as the same activities, but there is indeed a difference between them.
Mentioned below are the definitions and differences between them:

Quality Assurance Quality Control Testing

Activities which ensure the
implementation of
processes, procedures and
standards in context to
verification of developed
software and intended

requirements.

Activities which ensure the
verification of developed
software with respect to
documented (or not in
some cases) requirements.

Activities which ensure the
identification of
bugs/error/defects in the
Software.

Focuses on processes and
procedures rather then
conducting actual testing
on the system.

Focuses on actual testing
by executing Software with
intend to identify
bug/defect through
implementation of
procedures and process.

Focuses on actual testing.

Process oriented activities. Product oriented activities. Product oriented activities.

Preventive activities It is a corrective process. It is a preventive process

It is a subset of Software
Test Life Cycle (STLC)

QC can be considered as
the subset of Quality
Assurance.

Testing is the subset of
Quality Control.

Difference between Audit and Inspection

Audit: A systematic process to determine how the actual testing process is conducted
within an organization or a team. Generally, it is an independent examination of
processes which are involved during the testing of software. As per IEEE, it is a review of
documented processes whether organizations implements and follows the processes or
not. Types of Audit include the Legal Compliance Audit, Internal Audit, and System Audit.

Inspection: A formal technique which involves the formal or informal technical reviews
of any artifact by identifying any error or gap. Inspection includes the formal as well as
informal technical reviews. As per IEEE94, Inspection is a formal evaluation technique in
which software requirements, design, or code are examined in detail by a person or

group other than the author to detect faults, violations of development standards, and
other problems.

Formal Inspection meetings may have following process: Planning, Overview Preparation,
Inspection Meeting, Rework, and Follow-up.

Difference between Testing and Debugging

Testing: It involves the identification of bug/error/defect in the software without
correcting it. Normally professionals with a Quality Assurance background are involved in
the identification of bugs. Testing is performed in the testing phase.

TUTORIALS POINT

Simply Easy Learning Page 4

Debugging: It involves identifying, isolating and fixing the problems/bug. Developers
who code the software conduct debugging upon encountering an error in the code.
Debugging is the part of White box or Unit Testing. Debugging can be performed in the
development phase while conducting Unit Testing or in phases while fixing the reported
bugs.

Testing Myths

Given below are some of the more popular and common myths about Software testing.

Myth: Testing is too expensive.

Reality: There is a saying, pay less for testing during software development or pay more
for maintenance or correction later. Early testing saves both time and cost in many
aspects however, reducing the cost without testing may result in the improper design of
a software application rendering the product useless.

Myth: Testing is time consuming.
Reality: During the SDLC phases testing is never a time consuming process. However
diagnosing and fixing the error which is identified during proper testing is a time
consuming but productive activity.

Myth: Testing cannot be started if the product is not fully developed.

Reality: No doubt, testing depends on the source code but reviewing requirements and
developing test cases is independent from the developed code. However iterative or
incremental approach as a development life cycle model may reduce the dependency of
testing on the fully developed software.

Myth: Complete Testing is Possible.

Reality: It becomes an issue when a client or tester thinks that complete testing is
possible. It is possible that all paths have been tested by the team but occurrence of
complete testing is never possible. There might be some scenarios that are never
executed by the test team or the client during the software development life cycle and
may be executed once the project has been deployed.

Myth: If the software is tested then it must be bug free.

Reality: This is a very common myth which clients, Project Managers and the

management team believe in. No one can say with absolute certainty that a software
application is 100% bug free even if a tester with superb testing skills has tested the
application.

Myth: Missed defects are due to Testers.

Reality: It is not a correct approach to blame testers for bugs that remain in the
application even after testing has been performed. This myth relates to Time, Cost, and
Requirements changing Constraints. However the test strategy may also result in bugs
being missed by the testing team.

Myth: Testers should be responsible for the quality of a product.

Reality: It is a very common misinterpretation that only testers or the testing team
should be responsible for product quality. Tester’s responsibilities include the
identification of bugs to the stakeholders and then it is their decision whether they will fix

TUTORIALS POINT

Simply Easy Learning Page 5

the bug or release the software. Releasing the software at the time puts more pressure
on the testers as they will be blamed for any error.

Myth: Test Automation should be used wherever it is possible to use it and to reduce
time.

Reality: Yes it is true that Test Automation reduces the testing time but it is not possible
to start Test Automation at any time during Software development. Test Automaton
should be started when the software has been manually tested and is stable to some
extent. Moreover, Test Automation can never be used if requirements keep changing.

Myth: Any one can test a Software application.

Reality: People outside the IT industry think and even believe that any one can test the
software and testing is not a creative job. However testers know very well that this is
myth. Thinking alternatives scenarios, try to crash the Software with the intent to explore
potential bugs is not possible for the person who developed it.

Myth: A tester’s task is only to find bugs.

Reality: Finding bugs in the Software is the task of testers but at the same time they are
domain experts of the particular software. Developers are only responsible for the
specific component or area that is assigned to them but testers understand the overall
workings of the software, what the dependencies are and what the impacts of one
module on another module are.

Testing and ISO Standards
Many organizations around the globe are developing and implementing different
Standards to improve the quality needs of their Software. The next section briefly
describes some of the widely used standards related to Quality Assurance and Testing.
Here is a definition of some of them:

ISO/IEC 9126: This standard
deals with the following aspects to
determine the quality of a software
application:

 Quality model

 External metrics

 Internal metrics

 Quality in use metrics.

This standard presents some set of
quality attributes for any Software
such as:

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

The above mentioned quality attributes are further divided into sub-factors. These sub
characteristics can be measured by internal or external metrics as shown in the graphical
depiction of ISO-9126 model.

TUTORIALS POINT

Simply Easy Learning Page 6

ISO/IEC 9241-11: Part 11 of this
standard deals with the extent to
which a product can be used by
specified users to achieve specified
goals with Effectiveness, Efficiency
and Satisfaction in a specified context

of use.
This standard proposed a framework
which describes the usability
components and relationship between
them. In this standard the usability is
considered in terms of user
performance and satisfaction.
According to ISO 9241-11 usability
depends on context of use and the level of usability will change as the context changes.

ISO/IEC 25000: ISO/IEC 25000:2005 is commonly known as the standard which gives
the guidelines for Software product Quality Requirements and Evaluation (SQuaRE). This

standard helps in organizing and enhancing the process related to Software quality
requirements and their evaluations. In reality, ISO-25000 replaces the two old ISO
standards i.e. ISO-9126 and ISO-14598.

SQuaRE is divided into sub parts such as:

 ISO 2500n - Quality Management Division.

 ISO 2501n - Quality Model Division.

 ISO 2502n - Quality Measurement Division.

 ISO 2503n - Quality Requirements Division.

 ISO 2504n - Quality Evaluation Division.

The main contents of SQuaRE are:

 Terms and definitions.

 Reference Models.

 General guide.

 Individual division guides.

 Standard related to Requirement Engineering (i.e. specification, planning,

measurement and evaluation process

ISO/IEC 12119: This standard deals with Software packages delivered to the client. It
does not focus or deal with the client’s (the person/organization whom Software is
delivered) production process. The main contents are related to the following items:

 Set of Requirements for Software packages.

 Instructions for testing the delivered Software package against the requirements.

Some of the other standards related to QA and Testing processes are:

IEEE 829: A standard for the format of documents used in different stages of software
testing.
IEEE 1061: A methodology for establishing quality requirements, identifying,
implementing, analyzing, and validating the process and product of software quality
metrics is defined.
IEEE 1059: Guide for Software Verification and Validation Plans.
IEEE 1008: A standard for unit testing.
IEEE 1012: A standard for Software Verification and Validation.
IEEE 1028: A standard for software inspections.
IEEE 1044: A standard for the classification of software anomalies.

IEEE 1044-1: A guide to the classification of software anomalies.
IEEE 830: A guide for developing system requirements specifications.

TUTORIALS POINT

Simply Easy Learning Page 7

IEEE 730: A standard for software quality assurance plans.
IEEE 1061: A standard for software quality metrics and methodology.
IEEE 12207: A standard for software life cycle processes and life cycle data.
BS 7925-1: A vocabulary of terms used in software testing.
BS 7925-2: A standard for software component testing.

